Use the set-roster notation to indicate the elements in each of the following sets. 1.

- $S = \{n \in Z \mid n = (-1)k, \text{ for some integer } k\}.$ i. $T = \{m \in Z \mid m = 1 + (-1)i, \text{ for some integer } i\}.$ $W = \{t \in Z \mid 1 < t < -3\}$ ii. ٧. $U = \{r \in Z \mid 2 \le r \le -2\}$ iii.
- 2. Let A = {c, d, f, g}, B = { f, j }, and C = {d, g}.

Answer each of the following questions. Give reasons for your answers.

- Is $B \subseteq A$? Is $C \subseteq C$? a. c.
- Is $C \subseteq A$? b. d. Is C a proper subset of A?
- 3. Let $A = \{a, b, c\}, B = \{b, c, d\}, and C = \{b, c, e\}.$ A. Find A \cup (B \cap C), (A \cup B) \cap C, and (A \cup B) \cap (A \cup C). Which of these sets are equal?

B. Find (A - B) - C and A - (B - C). Are these sets equal?

- 4. Use an element argument to prove each statement A. For all sets A, B, and C, $(A - B) \cup (C - B) = (A \cup C) - B$. B. For all sets A, B, and C, $(A - B) \cap (C - B) = (A \cap C) - B$.
- 5. Write a negation for each of the following statements. Indicate which is true, the statement or its negation. Justify your answers.
 - a. \forall sets S, \exists a set T such that S \cap T = \emptyset . b. \exists a set S such that \forall sets T, S \cup T = \emptyset .
- 6. Verify whether the given statement is True or False For all sets A, B, and C, $A \cap (B - C) = (A \cap B) - (A \cap C)$.
- Let h ="John is healthy," w ="John is wealthy," and s = "John is wise." 7. Write the following into symbolic form
 - a. John is healthy and wealthy but not wise.
 - d. John is not wealthy but he is healthy and wise.

 $x \le 1$ or either x < 2 or $x \ge 3$.

- b. John is neither healthy, wealthy, nor wise. e. John is neither wealthy nor wise, but he is healthy. John is wealthy, but he is not both healthy and wise. c.
- 8. Write negations for each of the following statements. (Assume that all variables represent fixed quantities or entities, as appropriate.)
 - i. If P is a square, then P is a rectangle.
 - If today is New Year's Eve, then tomorrow is January. ii.
 - iii. If n is prime, then n is odd or n is 2.
 - iv. If x is nonnegative, then x is positive or x is 0.
 - If n is divisible by 6, then n is divisible by 2 and n is divisible by 3. ٧.
- 9. Determine whether the statements in (a) and (b) are logically equivalent.
 - A. Assume x is a particular real number.
 - a. x < 2 or it is not the case that 1 < x < 3.
 - B. $(p \lor q) \lor (p \land r)$ and $(p \lor q) \land r$
- 10. Define the following:
 - a. Proposition
 - b. Null set
 - c. Tautology

d. Valid arguments

b.

- e. Disjoint set
- f. De-morgan's Law

- **Course: Discrete Mathematics**
 - iv. $V = \{s \in Z | s > 2 \text{ or } s < 3\}$ $X = \{u \in Z \mid u \le 4 \text{ or } u \ge 1\}$ vi.