## **Unit - II** BOOLEAN ALGEBRA & LOGIC GATES

## BC

| Identity                                                                           | Dual                     |
|------------------------------------------------------------------------------------|--------------------------|
| Operations with 0 and 1:<br>1. X + 0 = X (identity)<br>3. X + 1 = 1 (null element) | 2. X.1 = X<br>4. X.0 = 0 |
| Idempotency theorem:<br>5. X + X = X                                               | 6. X.X = X               |
| Complementarity:<br>7. X + X' = 1                                                  | 8. $X.X^{\circ} = 0$     |
| Involution theorem:<br>9. (X')' = X<br>Created by : Asst. Prof. Ashish Sha         |                          |

### BUUIEVVII V/V/C

| Identities for multiple variables                                                                                                                                                    |                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Cummutative law:<br>10. $X + Y = Y + X$                                                                                                                                              | 11. X.Y = Y X                                             |
| Associative law:<br>12. (X + Y) + Z = X + (Y + Z)<br>= X + Y + Z                                                                                                                     | 13. (XY)Z = X(YZ) $= XYZ$                                 |
| Distributive law:<br>14. X(Y + Z) = XY + XZ                                                                                                                                          | 15. $X + (YZ) = (X + Y)(X + Z)$                           |
| $ \begin{array}{l} \textbf{DeMorgan's theorem:} \\ 16. (X + Y + Z +)' = X'Y'Z' \\ \text{or } \{f(X_1, X_2,, X_n, 0, 1, +, .)\} \\ = \{f(X_1', X_2',, X_n', 1, 0,, +)\} \end{array} $ | 17. $(XYZ)^{\circ} = X^{\circ} + Y^{\circ} + Z^{\circ} +$ |

## De MORGAN'S THEORM

- **DeMorgan's** Theorems describe the equivalence between gates with inverted inputs and gates with inverted outputs.
- Simply put, a NAND gate is equivalent to a Negative-OR gate, and a NOR gate is equivalent to a Negative-AND gate.

## De MORGAN'S THEORM

#### (i)Statement

The theorem states that the complement of sum of variables is equal to the product of their individual complements.

| of |   |   |   |                  |     |
|----|---|---|---|------------------|-----|
|    |   |   |   |                  |     |
| A  | B | A | B | $\overline{A+B}$ | A.B |
| 0  | 0 | 1 | 1 | 1                | 1   |
| 0  | 1 | 1 | 0 | 0                | 0   |
| 1  | 0 | 0 | 1 | 0                | 0   |
| 1  | 1 | 0 | 0 | 0                | 0   |

#### (ii)Statement-

The theorem states that the complement of product of variables is equal to the sum of their individual complements.

 $\overline{A.B} = \overline{A} + \overline{B}$ 

Proof

| A | B | A | B | A. B | $\overline{A} + \overline{B}$ |
|---|---|---|---|------|-------------------------------|
| 0 | 0 | 1 | 1 | 1    | 1                             |
| 0 | 1 | 1 | 0 | 1    | 1                             |
| 1 | 0 | 0 | 1 | 1    | 1                             |
| 1 | 1 | 0 | 0 | 0    | 0                             |

Another simple way of remembering the theorem is '**Cut the line and change the sign**'. De Morgan's law is used to simplify the Boolean expressions in digital circuits. De Morgan's laws can be applied to any number of variables.

E.g. De Morgan's laws for three variables  $\overline{A + B + C} = \overline{A}, \overline{B}, \overline{C} = \&$ 

 $\overline{A.B.C} = \overline{A} + \overline{B} + \overline{C}$ 

## **Perfect induction**

- **perfect induction**, or the **brute force method**, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases and each type of case is checked to see if the proposition in question holds.
- This is a method of direct proof. A proof by exhaustion contains two stages:
- A proof that the cases are exhaustive; i.e., that each instance of the statement to be proved matches the conditions of (at least) one of the cases.
- A proof of each of the cases.

## Induction proof of $x+x' \cdot y=x+y$

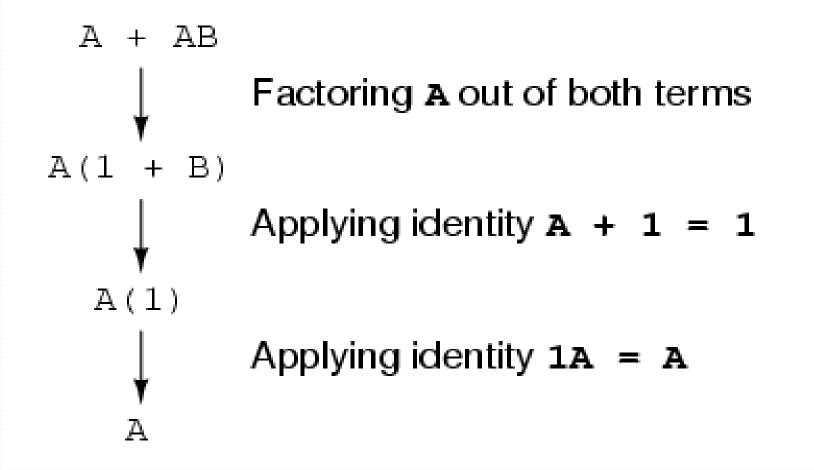
Use perfect induction to prove  $x+x' \cdot y=x+y$ 

| x          | У | x′y | x+x'y | x+y |  |
|------------|---|-----|-------|-----|--|
| 0          | 0 | 0   | 0     | 0   |  |
| 0          | 1 | 1   | 1     | 1   |  |
| 1          | 0 | 0   | 1     | 1   |  |
| 1          | 1 | 0   | 1     | 1   |  |
| equivalent |   |     |       |     |  |

# Reduction of logical expression using Boolean Algebra

- Boolean algebra finds its most practical use in the simplification of logic circuits.
- If we translate a logic circuit's function into symbolic (Boolean) form, and apply certain algebraic rules to the resulting equation to reduce the number of terms and/or arithmetic operations, the simplified equation may be translated back into circuit form for a logic circuit performing the same function with fewer components.
- If equivalent function may be achieved with fewer components, the result will be increased reliability and decreased cost of manufacture.





## Derive Boolean Expression from circuit To understand how to Derive Boolean Expression from circuit, let us

consider following circuit.

