Unit - I

GIC GATES



B(\f\l AR T T N N A

Identity Dual
Operations Wlll}.l ﬂ.and 1: ) X1=X
. X+ 0=X (1dentity) 4 X0=0
3. X+ 1=1 (null element) T
Idempotency theorem:

Complementarity:

1. X+X' =1 8 XX =0

Involution theorem:

9 (X') =X
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ITdenrtities for multiple variables

Cummutative law:

10 X+¥Y=Y+X

11 XY¥Y=Y X

Associative law:

12 (X+ )+ Z=X+(Y+Z)
—X+Y+Z

13 (XY)Z =X(YZ)
=XYZ

Distributive law:

14 X(Y+Z)=XY +XZ

15. X+ (YZ)= (X + V)X +Z)

DeMorgan’s theorem:

16 (X+~Y+Z+. VY=XYZ._

or {ﬂxl,:{}...;{m[]:l:‘h_:}}
= {fXy" Xy, X, . 1.0,.4))

17 (XYZ. Y =X +Y +Z + _
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De MORGAN’S THEORM

DeMorgan's Theorems describe the equivalence between gates with
inverted inputs and gates with inverted outputs.

Simply put, a NAND gate is equivalent to a Negative-OR gate, and a
NOR gate is equivalent to a Negative-AND gate.
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S DeMORGANS THEORM
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(ii)Statement-
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Perfect induction

perfect induction, or the brute force method, is a method

of mathematical proof in which the statement to be proved is split into a
finite number of cases or sets of equivalent cases and each type of case is
checked to see if the proposition in question holds.

This is a method of direct proof. A proof by exhaustion contains two
stages:

A proof that the cases are exhaustive; i.e., that each instance of the
statement to be proved matches the conditions of (at least) one of the
cases.

A proof of each of the cases.
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' Induction proof of x+x"y=x+y

Use perfect induction to prove x+x"y=x+y

X % Xy | X+xy | X+y
0 0 0 0 0
0 1 1 1 1
1 0 0 1 1
1 1 0 1 1

equivalent
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_Reduction of logical expression using Boolean
Algebra

Boolean algebra finds its most practical use in the simplification of logic
circuits.

If we translate a logic circuit’s function into symbolic (Boolean) form, and
apply certain algebraic rules to the resulting equation to reduce the
number of terms and/or arithmetic operations, the simplified equation
may be translated back into circuit form for a logic circuit performing the
same function with fewer components.

If equivalent function may be achieved with fewer components, the result
will be increased reliability and decreased cost of manufacture.
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Factoring A out of both terms

- T

L(l + B)
l Applyingidentity a + 1 = 1

l Applying identity 12 = A
i}
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——Derive Boolean Expression from circuit

* To understand how to Derive Boolean Expression from circuit, let us
consider following circuit.

A—— T\ 2B
2 N
J—— 0 ° — 2
Step -1 ,
S B+C
C
C
iy ﬁ\AB
B _/! 0 = AR + BC(B+C) B
B+C
C C

BC (B+C)

Step -3
B
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