OPERATIONS RESEARCH

TRANSPORTATION

NORTH WEST CORNER RULE

0.1)

Q.1)					
	W1	\mathbf{W}_2	W 3	W_4	SS
F1					
	42	32	50	26	11
F ₂					
	34	36	28	46	13
F ₃					
	64	54	36	82	19
DD					
	6	10	12	15	

TRANSPORTATION SCHEDULE

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

Q.2)

	Р	Q	R	S	SS
Α					
	19	30	50	10	1600
В					
	70	30	40	40	1200
С					
	40	8	70	20	1700
DD					
	1000	1500	800	1200	

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

TRANSPORTATION

Q.3)						
	D 1	D ₂	D 3	D 4	D 5	SS
O 1						
	2	11	10	3	7	4
O 2						
	1	4	7	2	1	8
O 3						
	2	9	4	8	12	9
DD						
	3	3	4	5	6	

TRANSPORTATION SCHEDULE

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

LEAST COST METHOD (LCM)

Q.4)	-	-			
	W ₁	\mathbf{W}_2	W ₃	W_4	SS
F ₁					
	42	32	50	26	11
\mathbf{F}_2					
	34	36	28	46	13
F ₃					
	64	54	36	82	19
DD					
	6	10	12	15	

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

TRANSPORTATION

Q.5)					
	Р	Q	R	S	SS
Α					
	19	30	50	10	1600
В					
	70	30	40	40	1200
С					
	40	8	70	20	1700
DD					
	1000	1500	800	1200	

TRANSPORTATION SCHEDULE

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

Q.6)

	D ₁	\mathbf{D}_2	D ₃	D 4	D 5	SS
O 1						
	2	11	10	3	7	4
O ₂						
	1	4	7	2	1	8
O 3						
	2	9	4	8	12	9
DD						
	3	3	4	5	6	

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

$\mathbf{UNIT} - \mathbf{II}$

OPERATIONS RESEARCH

TRANSPORTATION

VOGELS APPROXIMATION METHOD (VAM)

Q.7)		_				
	W1	W2	W3	W4	SS	PENALTIES
C1						
	42	32	50	26	11	
C2						
	34	36	28	46	13	
C3						
	64	54	36	82	19	
DD						
	6	10	12	15		
_						
P						_
E						
N						-
A						
						-
T						
F						-
S						
D						-

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

OPERATIONS RESEARCH

TRANSPORTATION

Q.8)						
	Р	Q	R	S	SS	PENALTIES
A	19	30	50	10	1600	
В	70	30	40	40	1200	
С	40	80	70	20	1700	
DD	1000	1500	800	1200		
P E N A L T I E S						

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

OPERATIONS RESEARCH

TRANSPORTATION

Q.9)									
	C ₁	C 2	С3	DUMMY	SS	PE	NALTI	ES	
F1									
	7	21	35		5				
F ₂									
	2	4	13		8				
F3					_				
	36	22	3		7				
F4	20		0		_				
DD	28	6	9		5				
DD	5	11	5						
	5	11	3						
Р									
Ē									
N									
Α									
L									
Т									
Ι									
Ε									
S									

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

OPERATIONS RESEARCH

TRANSPORTATION

Q.10))										
	D1	D2	D3	D4	D5	SS		PE	NALT	IES	
01											
	2	11	10	3	7	4					
02											
	1	4	7	2	1	8					
03											
	3	9	4	8	12	9					
DD											
	3	3	4	5	6						
P											
EN											
A											
L I											
T											
I F											
S											

FROM	ТО	QTY X COST	TOTAL COST
		INITIAL BASIC FEASIBLE SOLUTION	

TRANSPORTATION

Q.11) A company has a factories at F1, F2 and F3 which supply warehouses at W1, W2, W3 and W4 weekly. Factories capacity are 100, 125 and 75 units. Weekly warehouse requirements are 70, 90, 80 and 60 units respectively. Unit shipping cost (in rupees) are as follows:

FACTORY	WAREHOUSE									
	W_1	\mathbf{W}_2	W ₃	W_4	SUPPLY					
F ₁	6	5	1	3	100					
\mathbf{F}_2	4	8	7	2	125					
F ₃	6	3	9	5	75					
DEMAND	70	90	80	60						

Determine the optimum distribution for the company to minimize the shipping cost. Use NWCR to obtain Initial Solution.

Solution:

	W ₁	W_2	W ₃	\mathbf{W}_4	SS
\mathbf{F}_1					
	6	5	1	3	100
\mathbf{F}_2					
	4	8	7	2	125
\mathbf{F}_3					
	6	3	9	5	75
DD					
	70	90	80	60	

IBFS=____

RIM CONDITION = _____

TEST OF OPTIMALITY

	\mathbf{W}_1	W_2	W ₃	W_4	Ui
F ₁	6	5	1	3	U ₁ =
\mathbf{F}_2	4	8	7	2	$U_2 =$
F ₃	6	3	9	5	U ₃ =
Vi	$V_1 =$	$V_2 =$	V ₃ =	$V_4 =$	

	\mathbf{W}_1	\mathbf{W}_2	W ₃	W4	Ui
F ₁	6	5	1	3	$U_1 =$
F ₂	4	8	7	2	$U_2 =$
F ₃	6	3	9	5	U ₃ =
$\mathbf{V}_{\mathbf{i}}$	$V_1 =$	$V_2 =$	$V_3 =$	$V_4 =$	

	\mathbf{W}_1	W_2	W ₃	W ₄	Ui
\mathbf{F}_1	6	5	1	3	$\mathbf{U}_1 =$
\mathbf{F}_2	4	8	7	2	U ₂ =
F ₃	6	3	9	5	U ₃ =
Vi	$V_1 =$	$V_2 =$	V ₃ =	$V_4 =$	

	\mathbf{W}_1	\mathbf{W}_2	W ₃	W4	Ui
F ₁	6	5	1	3	$\mathbf{U}_1 =$
\mathbf{F}_2	4	8	7	2	$U_2 =$
F ₃	6	3	9	5	U3 =
$\mathbf{V}_{\mathbf{i}}$	$\mathbf{V}_1 =$	$V_2 =$	$V_3 =$	$V_4 =$	

Prof.Shahid Qureshi (9664847492)

TRANSPORTATION

	W_1	W_2	W ₃	W_4	Ui
F1	6	5	1	3	U1 =
F ₂	4	8	7	2	$U_2 =$
F3	6	3	9	5	U ₃ =
$\mathbf{V}_{\mathbf{i}}$	$V_1 =$	$V_2 =$	$V_3 =$	$V_4 =$	

TRANSPORTATION SCHEDULE

FROM	ТО	QTY X COST	TOTAL COST
		OPTIMUM SOLUTION	

Q.12) A manufacturer has distribution centers at X,Y and Z. These centers availability of 120, 95 and 85 units. His retail outlets at A,B,C and D require 50,60,90 and 100 units respectively. The transportation cost (in rupees) per unit between each center and outlets is as given below.

DISTRIBUTION CENTER	RETAIL OUTLETS			
	Α	В	С	D
Х	3	1	3	5
Y	2	6	1	3
Z	5	1	4	8

Determine the optimum distribution to minimize the cost of transportation. Use NWCR to obtain initial solution.

Solution:

	Α	В	С	D	SS
X					
	3	1	3	5	120
Y					
	2	6	1	3	95
Z					
	5	1	4	8	85
DD					
	50	60	90	100	
IBFS=					

RIM CONDITION = _____

TEST OF OPTIMALITY

	Α	В	С	D	Ui
X	3	1	3	5	U1 =
Y	2	6	1	3	U2 =
Z	5	1	4	8	U3 =
V1	V1 =	V2 =	V3 =	V4 =	

	Α	В	С	D	Ui
X	3	1	3	5	U1 =
Y	2	6	1	3	U2 =
Z	5	1	4	8	U3 =
V1	V1 =	V2 =	V3 =	V4 =	

	Α	В	С	D	Ui
X	3	1	3	5	U1 =
Y	2	6	1	3	U2 =
Z	5	1	4	8	U3 =
V1	V1 =	V2 =	V3 =	V4 =	
	Α	В	С	D	Ui

TRANSPORTATION

X	3	1	3	5	U1 =
Y	2	6	1	3	U2 =
Z	5	1	4	8	U3 =
V1	V1 =	V2 =	V3 =	V4 =	

TRANSPORTATION SCHEDULE

FROM	ТО	QTY X COST	TOTAL COST
		OPTIMUM SOLUTION	

Q.13) Four warehouses with capacities of 85,35,50 and 45 tons were receiving the materials from 3 factories with their supply capacity as 70,55 and 90 tons on regular bases. The transportation costs per tons from factories to warehouses are given in the following table:-

FACTORY	WAREHOUSE			
	1	2	3	4
Ι	6	1	9	3
II	11	5	2	8
III	10	12	4	7

A feasible solution states that from Factory I 25 tons have to be transported to Warehouse 3 and 45 tons to warehouse 4. Similarly 30 tons and 25 tons were transported from Factory II to warehouse 1 and warehouse 3 respectively. However from Factory III 55 tons and 35 tons were transported to warehouse 1 and warehouse 2 respectively.

Are the transportation schedule are optimum? If not, modify it and obtain optimum solution and optimum cost.

Q.14) Priyanshu Enterprise has three factories at locations A,B,C which supply to three warehouses located at D,E,F. The monthly factory capacities are 10,80 and 15 units respectively. The monthly warehouse requirements are 75,20 and 50 units respectively, units shipping cost are given below:

FACTORY/WAREH	D	Ε	F
Α	5	1	7
В	6	4	6
С	3	2	5

The penalty costs for not satisfying the demands at the warehouses D,E,F are Rs. 5, Rs. 3, and Rs. 2 per unit respectively. Using VAM. Find the IBFS. Test for Optimality.