
SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 1

Software Project Management

Chapter Five

Software effort
estimation

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 2

What makes a successful project?

Delivering:
 agreed functionality
 on time at the

agreed cost
 with the required

quality

Stages:
1. Set targets
2. Attempt to

achieve targets

BUT what if the targets are not achievable?

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 3

Some problems with estimating
Subjective nature of much of estimating

It may be difficult to produce evidence to support your
precise target

Political pressures
Managers may wish to reduce estimated costs in order
to win support for acceptance of a project proposal

Changing technologies
these bring uncertainties, especially in the early days
when there is a ‘learning curve’

Projects differ
Experience on one project may not be applicable to
another

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 4

Over and under-estimating

Parkinson’s Law: ‘Work
expands to fill the time
available’

An over-estimate is
likely to cause project to
take longer than it
would otherwise

Weinberg’s Zeroth
Law of reliability: ‘a
software project that
does not have to meet
a reliability
requirement can meet
any other requirement’

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 5

Basis for successful estimating
Information about past projects

Need to collect performance details about
past project: how big were they? How much
effort/time did they need?

Need to be able to measure the amount of work
involved

Traditional size measurement for software is
‘lines of code’ – but this can have problems

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 6

A taxonomy of estimating
methods

Bottom-up - activity based, analytical
Parametric or algorithmic models e.g. function
points
Expert opinion - just guessing?
Analogy - case-based, comparative
Parkinson and ‘price to win’

Parameters to be Estimated
Size is a fundamental measure of work
Based on the estimated size, two parameters are
estimated:

Effort
Duration

Effort is measured in person-months:
One person-month is the effort an individual
can typically put in a month.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 7

Person-Month
Suppose a project is estimated to take 300
person-months to develop:

Is one person working for 30 days same as 30
persons working for 1 day?
Yes/No? why?

How many hours is a man month?
Default Value: 152 hours per month
19 days at 8 hours per day.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 8

Mythical Man-Month

“Cost varies as product of men and months,
progress does not.”

Hence the man-month as a unit for
measuring the size of job is a dangerous
and deceptive myth.

The myth of additional manpower
Brooks Law: “Adding manpower to a late
project makes it later”

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 9

Mythical Man-Month

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 10

For tasks with complex interrelationship, addition of
manpower to a late project does not help.

Measure of Work
The project size is a measure of the problem
complexity in terms of the effort and time required
to develop the product.
Two metrics are used to measure project size:

Source Lines of Code (SLOC)
Function point (FP)

FP is now-a-days favoured over SLOC:
Because of the many shortcomings of SLOC.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 11

Major Shortcomings of SLOC

Difficult to estimate at start of a project
Only a code measure
Programmer-dependent
Does not consider code complexity

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 12

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 13

Bottom-up versus top-down
Bottom-up

use when no past project data
identify all tasks that have to be done – so quite
time-consuming
use when you have no data about similar past
projects

Top-down
produce overall estimate based on project cost
drivers
based on past project data
divide overall estimate between jobs to be done

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 14

Bottom-up estimating

1. Break project into smaller and smaller
components

[2. Stop when you get to what one person can
do in one/two weeks]

3. Estimate costs for the lowest level activities
4. At each higher level calculate estimate by

adding estimates for lower levels

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 15

Top-down estimates

Produce overall
estimate using
effort driver(s)
distribute
proportions of
overall estimate
to components

design code

overall
project

test

Estimate
100 days

30%
i.e.
30 days

30%
i.e.
30 days

40%
i.e. 40 days

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 16

Algorithmic/Parametric models
COCOMO (lines of code) and function points
examples of these
Problem with COCOMO etc:

guess algorithm estimate

but what is desired is

system
characteristic

algorithm estimate

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 17

Parametric models - the need for
historical data

simplistic model for an estimate
estimated effort = (system size) / productivity
e.g.
system size = lines of code
productivity = lines of code per day

productivity = (system size) / effort
based on past projects

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 18

Parametric models
Some models focus on task or system size e.g.
Function Points
FPs originally used to estimate Lines of Code, rather
than effort

model

Number
of file types

Numbers of input
and output transaction types

‘system
size’

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 19

Parametric models

Other models focus on productivity: e.g. COCOMO
Lines of code (or FPs etc) an input

System
size

Productivity
factors

Estimated effort

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 20

Expert judgement

Asking someone who is familiar with and
knowledgeable about the application area
and the technologies to provide an estimate
Particularly appropriate where existing code
is to be modified
Research shows that experts judgement in
practice tends to be based on analogy

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 21

Estimating by analogy

source cases

attribute values

effort

attribute values ?????
target case

attribute values

attribute values

attribute values

attribute values

attribute values

effort

effort

effort

effort

effort Select case
with closet attribute
values

Use effort
from source as
estimate

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 22

Stages: identify

Significant features of the current project
previous project(s) with similar features
differences between the current and
previous projects
possible reasons for error (risk)
measures to reduce uncertainty

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 23

Machine assistance for source
selection (ANGEL)

Number of outputs

target

Source A

Source B

Euclidean distance = sq root ((It - Is)2 + (Ot - Os)2)

It-Is

Ot-Os

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 24

Parametric models

We are now looking more closely at four parametric
models:

1. Albrecht/IFPUG function points
2. Symons/Mark II function points
3. COSMIC function points
4. COCOMO81 and COCOMO II

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 25

Albrecht/IFPUG function points

Albrecht worked at IBM and needed a way of
measuring the relative productivity of different
programming languages.
Needed some way of measuring the size of an
application without counting lines of code.
Identified five types of component or functionality
in an information system
Counted occurrences of each type of functionality
in order to get an indication of the size of an
information system

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 26

Albrecht/IFPUG function points -
continued

Five function types
1. Logical interface file (LIF) types – equates

roughly to a data store in systems analysis
terms. Created and accessed by the target
system

2. External interface file types (EIF) – where data
is retrieved from a data store which is actually
maintained by a different application.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 27

Albrecht/IFPUG function points -
continued

3. External input (EI) types – input transactions which
update internal computer files

4. External output (EO) types – transactions which
extract and display data from internal computer files.
Generally involves creating reports.

5. External inquiry (EQ) types – user initiated
transactions which provide information but do not
update computer files. Normally the user inputs some
data that guides the system to the information the
user needs.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 28

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 29

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 30

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 31

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 32

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 33

Albrecht complexity multipliers

External user
types

Low
complexity

Medium
complexity

High
complexity

EI 3 4 6

EO 4 5 7

EQ 3 4 6

LIF 7 10 15

EIF 5 7 10

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 34

Examples
Payroll application has:
1. Transaction to input, amend and delete employee

details – an EI that is rated of medium complexity
2. A transaction that calculates pay details from

timesheet data that is input – an EI of high complexity
3. A transaction of medium complexity that prints out

pay-to-date details for each employee – EO
4. A file of payroll details for each employee – assessed

as of medium complexity LIF
5. A personnel file maintained by another system is

accessed for name and address details – a simple EIF
What would be the FP counts for these?

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 35

FP counts

1. Medium EI 4 FPs
2. High complexity EI 6 FPs
3. Medium complexity EO 5 FPs
4. Medium complexity LIF 10 FPs
5. Simple EIF 5 FPs
Total 30 FPs

If previous projects delivered 5 FPs a day,
implementing the above should take 30/5 = 6
days

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 36

Function points Mark II
Developed by Charles R. Symons
‘Software sizing and estimating - Mk II FPA’, Wiley
& Sons, 1991.
Builds on work by Albrecht
Work originally for CCTA:

should be compatible with SSADM; mainly used
in UK

has developed in parallel to IFPUG FPs
A simpler method

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 37

Function points Mk II continued
For each transaction,
count

data items input (Ni)
data items output (No)

entity types accessed
(Ne)

#entities
accessed

#input
items

#output
items

FP count = Ni * 0.58 + Ne * 1.66 + No * 0.26

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 38

Function points for embedded systems

Mark II function points, IFPUG function points
were designed for information systems
environments
COSMIC FPs attempt to extend concept to
embedded systems
Embedded software seen as being in a particular
‘layer’ in the system
Communicates with other layers and also other
components at same level

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 39

Layered software

Higher layers

Lower layers

Software component peer
component

Makes a request
for a service Receives service

Receives request Supplies service

Peer to peer
communication

Persistent
storage

Data reads/
writes

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 40

COSMIC FPs
The following are counted:

Entries: movement of data into software component
from a higher layer or a peer component
Exits: movements of data out
Reads: data movement from persistent storage
Writes: data movement to persistent storage

Each counts as 1 ‘COSMIC functional size unit’
(Cfsu)

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 41

COCOMO81
Based on industry productivity standards -
database is constantly updated
Allows an organization to benchmark its software
development productivity
Basic model

effort = c x sizek

C and k depend on the type of system: organic,
semi-detached, embedded
Size is measured in ‘kloc’ ie. Thousands of lines
of code

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 42

The COCOMO constants

System type c k

Organic (broadly,
information systems)

2.4 1.05

Semi-detached 3.0 1.12

Embedded (broadly, real-
time)

3.6 1.20

k exponentiation – ‘to the power of…’
adds disproportionately more effort to the larger projects
takes account of bigger management overheads

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 43

Development effort multipliers (dem)

According to COCOMO, the major productivity drivers include:

Product attributes: required reliability, database size, product
complexity

Computer attributes: execution time constraints, storage
constraints, virtual machine (VM) volatility

Personnel attributes: analyst capability, application
experience, VM experience, programming language
experience

Project attributes: modern programming practices, software
tools, schedule constraints

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 44

Using COCOMO development effort
multipliers (dem)

An example: for analyst capability:
Assess capability as very low, low, nominal, high or very
high
Extract multiplier:

very low 1.46
low 1.19
nominal 1.00
high 0.80
very high 0.71

Adjust nominal estimate e.g. 32.6 x 0.80 = 26.8 staff
months

As Time Passed… COCOMO 81
Showed Limitations…

COCOMO 81 was developed with the
assumption:

Waterfall process would be used and that
all software would be developed from
scratch.

Since its formulation, there have been many
changes in software engineering practices:

Made it difficult to use COCOMO
meaningfully.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 45

Major Changes in Program
Development Practices

Software reuse
Application generation of programs
Object oriented approaches
Need for rapid development
Agile models

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 46

COCOMO II

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 47

COCOMO II Models
COCOMO 2 incorporates a range of sub-models:
Produces increasingly accurate estimates.
The 4 sub-models in COCOMO 2 are:

Application composition model. Used when software is
composed from existing parts.
Early design model. Used when requirements are
available but design has not yet started.
Reuse model. Used to compute the effort of integrating
reusable components.
Post-architecture model. Used once the system
architecture has been designed and more information
about the system is available.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 48

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 49

COCOMO II
An updated version of COCOMO:

There are different COCOMO II models for estimating at the
‘early design’ stage and the ‘post architecture’ stage when
the final system is implemented. We’ll look specifically at
the first.

The core model is:

pm = A(size)(sf) ×(em1) ×(em2) ×(em3)….

where pm = person months, A is 2.94, size is number of
thousands of lines of code, sf is the scale factor, and emi is
an effort multiplier

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 50

COCOMO II Scale factor
Based on five factors which appear to be particularly sensitive

to system size

1. Precedentedness (PREC). Degree to which there are
past examples that can be consulted

2. Development flexibility (FLEX). Degree of flexibility that
exists when implementing the project

3. Architecture/risk resolution (RESL). Degree of uncertainty
about requirements

4. Team cohesion (TEAM).

5. Process maturity (PMAT) could be assessed by CMMI –
see Section 13.10

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 51

COCOMO II Scale factor values

Driver Very
low

Low Nom-
inal

High Very
high

Extra
high

PREC 6.20 4.96 3.72 2.48 1.24 0.00

FLEX 5.07 4.05 3.04 2.03 1.01 0.00

RESL 7.07 5.65 4.24 2.83 1.41 0.00

TEAM 5.48 4.38 3.29 2.19 1.10 0.00

PMAT 7.80 6.24 4.68 3.12 1.56 0.00

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 52

Example of scale factor

A software development team is developing an application
which is very similar to previous ones it has developed.

A very precise software engineering document lays down
very strict requirements. PREC is very high (score 1.24).

FLEX is very low (score 5.07).

The good news is that these tight requirements are unlikely
to change (RESL is high with a score 2.83).

The team is tightly knit (TEAM has high score of 2.19), but
processes are informal (so PMAT is low and scores 6.24)

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 53

Scale factor calculation
The formula for sf is

sf = B + 0.01 × Σ scale factor values

i.e. sf = 0.91 + 0.01

× (1.24 + 5.07 + 2.83 + 2.19 + 6.24)

= 1.0857

If system contained 10 kloc then estimate would be 2.94 x
101.0857 = 35.8 person months

Using exponentiation (‘to the power of’) adds
disproportionately more to the estimates for larger
applications

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 54

Effort multipliers
As well as the scale factor effort multipliers

are also assessed:
RCPX Product reliability and complexity
RUSE Reuse required
PDIF Platform difficulty
PERS Personnel capability
FCIL Facilities available
SCED Schedule pressure

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 55

Effort multipliers

Extra
low

Very low Low Nom-
inal

High Very
high

Extra
high

RCPX 0.49 0.60 0.83 1.00 1.33 1.91 2.72

RUSE 0.95 1.00 1.07 1.15 1.24

PDIF 0.87 1.00 1.29 1.81 2.61

PERS 2.12 1.62 1.26 1.00 0.83 0.63 0.50

PREX 1.59 1.33 1.12 1.00 0.87 0.74 0.62

FCIL 1.43 1.30 1.10 1.00 0.87 0.73 0.62

SCED 1.43 1.14 1.00 1.00 1.00

SPM 6e) Software effort estimation© The McGraw-Hill Companies, 2017 56

Example
Say that a new project is similar in most characteristics to
those that an organization has been dealing for some time

except
the software to be produced is exceptionally complex
and will be used in a safety critical system.

The software will interface with a new operating system
that is currently in beta status.

To deal with this the team allocated to the job are
regarded as exceptionally good, but do not have a lot of
experience on this type of software.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 57

Example -continued

RCPX very high 1.91
PDIF very high 1.81
PERS extra high 0.50
PREX nominal 1.00
All other factors are nominal
Say estimate is 35.8 person months
With effort multipliers this becomes 35.8 x 1.91 x

1.81 x 0.5 = 61.9 person months

Staffing
Norden was one of the first to investigate staffing pattern:

Considered general research and development (R&D)
type of projects.

Norden concluded:

Staffing pattern for any R&D project can be
approximated by the Rayleigh distribution curve

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 58

TD

Manpower

Time

Putnam’s Work
Putnam adapted the Rayleigh-Norden curve:

Related the number of delivered lines of code to
the effort and the time required to develop the
product.
Studied the effect of schedule compression:

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 59

Example

If the estimated development time using
COCOMO formulas is 1 year:

Then to develop the product in 6 months,
the total effort required (and hence the
project cost) increases 16 times.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 60

Boehm’s Result

There is a limit beyond which a software project
cannot reduce its schedule by buying any more
personnel or equipment.

This limit occurs roughly at 75% of the nominal
time estimate for small and medium sized
projects

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017

Capers Jones’ Estimating Rules of
Thumb

Empirical rules:
Formulated based on observations
No scientific basis

Because of their simplicity,:
These rules are handy to use for making off-
hand estimates.
Give an insight into many aspects of a project
for which no formal methodologies exist yet.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 62

Capers Jones’ Rules
Rule 1: SLOC-function point equivalence:

One function point = 125 SLOC for C programs.

Rule 2: Project duration estimation:
Function points raised to the power 0.4 predicts the
approximate development time in calendar months.

Rule 3: Rate of requirements creep:
User requirements creep in at an average rate of 2% per
month from the design through coding phases.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 63

Capers Jones’ Rules

Rule 4: Defect removal efficiency:
Each software review, inspection, or test step will find
and remove 30% of the bugs that are present.

Rule 5: Project manpower estimation:
The size of the software (in function points) divided by
150 predicts the approximate number of personnel
required for developing the application.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017

Capers’ Jones Rules
Rule 6: Number of personnel for maintenance

Function points divided by 500 predicts the approximate
number of personnel required for regular maintenance
activities.

Rule 7: Software development effort estimation:
The approximate number of staff months of effort
required to develop a software is given by the software
development time multiplied with the number of
personnel required.

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017

SPM (6e) Software effort estimation© The McGraw-Hill Companies, 2017 66

Some conclusions: how to review
estimates

Ask the following questions about an estimate
What are the task size drivers?
What productivity rates have been used?
Is there an example of a previous project of about
the same size?
Are there examples of where the productivity
rates used have actually been found?

	Software Project Management
	What makes a successful project?
	Some problems with estimating
	Over and under-estimating
	Basis for successful estimating
	A taxonomy of estimating methods
	Parameters to be Estimated
	Person-Month
	Mythical Man-Month
	Mythical Man-Month
	Measure of Work
	Major Shortcomings of SLOC
	Bottom-up versus top-down
	Bottom-up estimating
	Top-down estimates
	Algorithmic/Parametric models
	Parametric models - the need for historical data
	Slide Number 18
	Parametric models
	Expert judgement
	Estimating by analogy
	Stages: identify
	Machine assistance for source selection (ANGEL)
	Parametric models
	Albrecht/IFPUG function points
	Albrecht/IFPUG function points - continued
	Albrecht/IFPUG function points - continued
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Albrecht complexity multipliers
	Examples
	FP counts
	Function points Mark II
	Function points Mk II continued
	Function points for embedded systems
	Layered software
	COSMIC FPs
	COCOMO81
	The COCOMO constants
	Development effort multipliers (dem)
	Using COCOMO development effort multipliers (dem)
	As Time Passed… COCOMO 81 Showed Limitations…
	Major Changes in Program Development Practices
	COCOMO II
	COCOMO II Models
	COCOMO II
	COCOMO II Scale factor
	COCOMO II Scale factor values
	Example of scale factor
	Scale factor calculation
	Effort multipliers
	Effort multipliers
	Example
	Example -continued
	Staffing
	Putnam’s Work
	Example
	Boehm’s Result
	Capers Jones’ Estimating Rules of Thumb
	Capers Jones’ Rules
	Capers Jones’ Rules
	Capers’ Jones Rules
	Some conclusions: how to review estimates

