1 A] Given an IP address and network mask, determine other information about the IP address such as:

- Network address
- Network broadcast address
- Total number of host bits
- Number of hosts

IP address : 200.11.8.45
Step 1 : convert the given address in binary

200	11	8	45
11001000	00001011	00001000	00101101

Step 2 : find the class of the given address
Class C -> because first byte (200) is between 192-223.

Step 3: Find No. of address in the block
Host byte $=1$ byte $=8$ bits
No. of address in the block $=>\mathbf{2}^{8}=\mathbf{2 5 6}$

Step 4 : find subnet mask
Class C : 255.255.255.0

Step 5 : Find first address in the block

200	11	8	0
11001000	00001011	00001000	00000000

200.11.8.0 => first address => Network address
200.11.8.1 => first host address

Step 6: Find last address in the block
200.11.8.255 => last address => Broadcast address
200.11.8.254 => last host address

Step 7 : Find no. of host address in the block
No. of host address = Total no of address in the block - network address broadcast address

No. of host address $=2^{\wedge} 8-1-1$

$$
=256-1-1 \quad \text { or 256-2 }
$$

No. of host address =254
2) Given IP address : 167.199.170.82

CLASS : B
No of host bits $=16$
No of address $=2^{\wedge} 16=65536$
No of host address $=65536-2=65534$
First host address => 167.199.0.1
Network address => 167.199.0.0
Broadcast address => 167.199.255.255
Last host => 167.199.255.254
Subnet mask : 255.255.0.0
3) Given IP address : 10.20.200.40

Step 1 : convert in binary

10	20	200	40
00001010	00010100	11001000	00101000

Class A => 10 between 0 to 127

No of host bits : 24
NETWORK ADDRESS : 10.0.0.0
FIRST HOST ADDRESS : 10.0.0.1
BROADCAST ADDRESS : 10.255.255.255
LAST HOST ADDRESS : 10.255.255.254
NO OF HOST ADDRESS : 2^24-2
SUBNET MASK : 255.0.0.0

1 B] Classless Address

$$
\text { IP : 167.199.170.82 / } 27
$$

After '/' notation => number represents no. of network bits.
Step 1 : convert in binary

167	199	170	82
10100111	11000111	10101010	01010010

101001111100011110101010010 110010
Network bits host bits
No of host bits : 32-27=5
No. of Host address: $2^{\wedge} 5-2=32-2=30$
First host address => 10100111110001111010101001000001

$$
\text { =>167.199.170.65 / } 27
$$

Network address = 167.199.170.64 / 27
broadcast host => 10100111110001111010101001011111
\Rightarrow 167.199.170.95/

